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Shannon entropy H and genome order index S are used in segmenting DNA sequences. Zhang et al. �Phys.
Rev. E 72, 041917 �2005�� found that the two schemes are equivalent when a DNA sequence is converted to
a binary sequence of S �strong H bond� and W �weak H bond�. They left the mathematical proof to mathema-
ticians who are interested in this issue. In this paper, a possible mathematical explanation is given. Moreover,
we find that Chargaff parity rule 2 is the necessary condition of the equivalence, and the equivalence disappears
when a DNA sequence is regarded as a four-symbol sequence. At last, we propose that S−2−H may be related
to species evolution.
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I. INTRODUCTION

The rapid growth of DNA sequences in the DNA data-
bases has made analysis of DNA sequence very important in
biology. Turning points �or segmentation points�, through
which the base composition undergoes sudden changes, usu-
ally have significant biological implications, including repli-
cation origins �1� and integration sites of horizontally trans-
ferred genes or genomic islands �2,3�. In bioinformatics, the
Markov model �4,5�, the recursive entropy �6–8�, the cumu-
lative GC profile �9�, the wavelet multiple scale analysis
�10�, and the genome order index �11� are usual segmenta-
tion algorithms. The genome order index is especially notice-
able for its simpleness and speediness. In 2004, Zhang and
Zhang �12� proposed the genome order index S=a2+c2+g2

+ t2, where a ,c ,g , t are frequencies of bases A ,C ,G ,T in the
genome, respectively. Based on the values of S and H �H=
−log2�aaccggtt�, the entropy of distributions of four bases in a
genome� for 627 virus genomes, they found that 1

4 �S�
1
3 is

valid for almost all genomes, meanwhile the correlation co-
efficient between S and H is calculated and found to be equal
to −1. In 2005, Zhang et al. �11� found the equivalence of H
and S in segmenting DNA sequences. But they left the math-
ematical proof to mathematicians who are interested in this
issue. Recently, scientists gave some discussions about the
two indices �13,14�. The relation between S and H, as well as
those among the two indices and G+C content still needs
further study.

II. PROOF AND DISCUSSION

According to Zhang et al. �11�, we describe the genome
order index and entropy-based segmentation algorithms as
follows. Consider a genome with N bases. Let n be an inte-
ger, 2�n�N−1. For a given n, the genome sequence is
partitioned into two sequences, one left and the other right.
Let P= �p1 , p2 , . . . , pk� and Q= �q1 ,q2 , . . . ,qk� be two prob-
ability distributions, where 0� pi ,qi�1, for i=1,2 , . . . ,k,
and �i=1

k pi=1, �i=1
k qi=1. Define

S�P� = �
i=1

k

pi
2,

which is the genome order index in the case of k=4. Let
Pl= �al ,gl ,cl , tl� and Pr= �ar ,gr ,cr , tr�, where al ,gl ,cl , tl and
ar ,gr ,cr , tr are the occurrence frequencies of bases A, C, G,
and T in the left and right subsequences, respectively. Define

�S�Pl,Pr� = �n/N�S�Pl� + ��N − n�/N�S�Pr� − S��n/N�Pl

+ ��N − n�/N�Pr�, n = 2, . . . ,N − 1. �1�

Suppose that n� is a position at which �S�Pl , Pr� reaches
maximum; then, n� is a compositional segmentation point of
the genome first found. The algorithm is recursive. Similarly,
the Jensen-Shannon divergence is defined by

D�n� = H − � n

N
Hleft +

N − n

N
Hright	, n = 2, . . . ,N − 1,

�2�

where Hleft and Hright are the Shannon entropy for the left and
right subsequences, respectively. Suppose that n� is calcu-
lated by D�n��=max D�n�, if D�n�� is above a given thresh-
old, then n� is deemed a segmentation point. The algorithm is
also recursive.

Zhang et al. �11� found the coordinates of segmentation
points derived from the genome order index and entropy-
based segmentation algorithms are all identical when a DNA
sequence is converted into a binary sequence. But they left
the mathematical proof for such equivalence to mathemati-
cians who are interested in this issue.

Given a DNA sequence, by pmax and pmin we denote the
max�a ,c ,g , t� and the min�a ,c ,g , t�, respectively, and write
pª

pmin

pmax
. By Am we denote an arithmetic mean of a

pmax
, g

pmax
,

c
pmax

, and t
pmax

defined as follows:

Am =
a2 + g2 + c2 + t2

pmax
=

S

pmax
. �3�

Similarly, a geometric mean �written as Gm� of them is de-
fined to be*zhaqi1972@163.com
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� a

pmax
	a� g

pmax
	g� c

pmax
	c� t

pmax
	t

,

which is calculated as

Gm =
1

2Hpmax
, �4�

where H=−log2�aaccggtt�, as we mentioned in Sec. III.
When the Chargaff parity rule 2 is considered, the follow-

ing theorem gives the relation between Am and Gm.
Theorem 1. Here,

Am = Gm + o�
pmin − 1
4 
� . �5�

Proof. By the Chargaff parity rule 2 �15� which says a
= t and g=c, there are only two cases: �i� a= t= pmax, g=c
= pmin or �ii�a= t= pmin, g=c= pmax. With these conditions
we have

Gm = � pmin

pmax
	2pmin� pmax

pmax
	2pmax

= p2pmin

and

Am = 2pmax
pmax

pmax
+ 2pmin

pmin

pmax
= 1 + 2pmin�p − 1� .

Note that 2pmax+2pmin=a+g+c+ t=1. Setting pmin=x, we
have pmax=0.5−x and p=

pmin

pmax
= x

0.5−x . Correspondingly,

Gm = p2pmin = � x

0.5 − x
	2x

and

Am = 1 + 2pmin�p − 1� =
8x2 − 4x + 1

1 − 2x
.

Taylor’s mean value theorem says that, when x0� �a ,b�
and f�x� is �n+1�-order differentiable in �a ,b�, ∀x� �a ,b�,
we have f�x�= f�x0�+

f��x0�
1! �x−x0�+

f��x0�
2! �x−x0�2+ ¯

+
f �n��x0�

n! �x−x0�n+o��x−x0�n�. Naturally, ∀x� �0,1�, by set-
ting x0= 1

4 � �0,1�, one can get Taylor series for function
f�x�=Am−Gm as follows:

f�x� = Am − Gm = 8x2−4x+1
1−2x − � x

0.5−x�2x = 8�x − 1
4�2 + 32�x − 1

4�3

+ 224
3 �x − 1

4�4 + 896
3 �x − 1

4�5 + o��x − 1
4�5� = o�
x − 1

4 
� .

So,

Am = Gm + o�
pmin − 1
4 
� .

�
Consequently, the negative correlation between the S

=a2+c2+g2+ t2 and H=−log2�aaccggtt� always holds, as
shown by Theorem 2.

Theorem 2. H is negatively correlated with S.

Proof. Based on Eqs. �3� and �4� and Theorem 1 we come
to the conclusion immediately:

S = 2−H + pmax�Am − Gm� = 2−H + 2�x − 1
4�2 − 40

3 �x − 1
4�4

+ o��x − 1
4�4� = 2−H + o�
x − 1

4 
� .

Obviously, H is negatively correlated with S. �
Based on Theorem 2, it is necessary that correlation coef-

ficient between S and H is −1, which was calculated based
on 627 virus genomes in �12�. Moreover, in Fig. 1 of �11�,
Zhang et al. pointed out that H and S are linearly correlated.
However, according to Theorem 2, S�2−H. When H
� �1.86,2�, the straight line �in Fig. 1� and curve S=2−H are
approximately overlapped. In order to show the general rule
independent of data, a general graph is plotted in Fig. 1. We
pick 1000 groups of random values for a ,c ,g , t and plot S
against H. The result is quite striking, an odd cusped
bounded area near the curve of function S=2−H. It may
verify S−2−H=o�
x− 1

4 
�. Moreover, the density is highly
concentrated in the region �1.86, 2�, where S seems to be
linearly related to H.

In Fig. 3 of �12�, Zhang and Zhang presented the correla-
tion between “G+C content” and Shannon Entropy H, as
well as the correlation between G+C content and genome
order index S. In fact, based on the conclusion shown above,
such correlations are also necessary.

Theorem 3. With Chargaff parity rule 2,

H = 1 − log2 xx − log2�1 − x��1−x�, �6�

where x=g+c.
Proof. By the Chargaff parity rule 2, a= t and g=c, there

are only two cases: �i� a= t= pmax, g=c= pmin or �ii� a= t
= pmin, g=c= pmax. With these conditions, using

0 0.5 1 1.5 2
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0.4

0.5

0.6

0.7

0.8

0.9
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S

FIG. 1. �Color online� The circle plot demonstrates the relation-
ship between S and H of 1000 groups of random values for a, c, g,
and t. The curve is the plot of function S=2−H.
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Gm =
1

2Hpmax

and

Gm = � pmin

pmax
	2pmin� pmax

pmax
	2pmax

= p2pmin,

we come to the conclusion immediately: H=1−log2 xx

−log2�1−x��1−x�, where x=g+c. �
Theorem 4. With Chargaff parity rule 2,

S = x2 − x + 1
2 , �7�

where x=g+c.
Proof. By the Chargaff parity rule 2, a= t and g=c, there

are only two cases: �i� a= t= pmax, g=c= pmin, or �ii�a= t
= pmin, g=c= pmax. With these conditions, using

Am =
a2 + g2 + c2 + t2

pmax
=

S

pmax

and

Am = 2pmax
pmax

pmax
+ 2pmin

pmin

pmax
= 1 + 2pmin�p − 1� ,

we come to the conclusion immediately: S=x2−x+ 1
2 , where

x=g+c. �
Then, we plot H=1−log2 xx−log2�1−x��1−x� and S=x2

−x+ 1
2 for x� �0.2,0.8� in Fig. 2, respectively. The plots are

consistent with those shown in Fig. 3 of �12�. It means the
correlations among S ,H and G+C content appeared in Fig. 3
of �12� are necessary. On the other hand, the consistency also
verifies the correctness of above theorems.

From a physics point of view, the entropy generally is
maximized. Based on the negative correlation of S and H,
most genomes are likely to maximize their entropy and mini-
mize their S, which makes S�

1
3 valid to most genomes ex-

cept those appeared above the line S= 1
3 in Fig. 3 of �12�.

Elhaik et al. �13� claimed that “S�
1
3 is a mathematical

property of S that should be always valid regardless of spe-
cific data.” This claim is wrong in the case where the fre-
quencies a=0.6, c=0, g=0.4, t=0, so S=0.52�

1
3 . Note that

in �14� Zhang gave a similar example.
When a DNA sequence is converted into a binary se-

quence of S �strong H bond� and W �weak H bond�, set x
=min�a+ t ,g+c�, we have

S − 2−H = �x2 + �1 − x�2� − ��xx��1 − x��1−x�� . �8�

Setting x0= 1
2 , we can calculate the Taylor series of �S

−2−H� as follows. S−2−H= �x2+ �1−x�2�− ��xx��1−x��1−x��
= � 1

2 +log 2− 1
2 � �log 2�2− 1

2 � �1−log 2��� �−1+log 2�� �x
− 1

2 �2+o�x− 1
2 �2=o�
x− 1

2 
�. Obviously, when o�
x− 1
2 
� is

small enough, S and 2−H can be regarded as equal.
Generally speaking, for a DNA sequence, the difference

between S and 2−H is very small. Following Zhang et al.
�11�, we take the complete sequence of human major histo-
compatibility complex �MHC� as an example. The MHC is
3673 777 bp long and can be seen from �16�. Recently, due
to the extensive study of its isochore structure, the MHC
sequence becomes a touchstone for testing any segmentation
algorithm. We list 14 pairs of S−2−H and S−2−H

S+2−H in Table I for
14 segments of the MHC, respectively. Obviously, S−2−H is
very small. It verifies the equivalence of S and 2−H for DNA
segmentation. Additionally, when 2−H increases, H will de-
crease. Consequently, when H reaches the maximum, S will
reach the minimum. In this sense, the closeness of S and 2−H

may underlie the equivalence of S and H in segmenting
DNA. That is to say, the equivalence of S and 2−H may make
�S�Pl , Pr� �in Eq. �1�� and D�n� �in Eq. �2�� reach their maxi-
mum at the same point.

Note that article �11� only pointed out that the equivalence
exists in the MHC and other human chromosomes; according
to the mathematical analysis above, such equivalence should

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

H
,S

FIG. 2. �Color online� The upper is the plot of H=1−log2 xx

−log2�1−x��1−x�; the lower is the plot of S=x2−x+ 1
2 .

TABLE I. Absolute and relative difference between S and 2−H

of some DNA segments of the MHC, where the start and end points
represent the base positions of the MHC.

Start point End point S−2−H S−2−H

S+2−H

1 2483966 0.0006888 0.0006874

2483966 3673777 0.0043608 0.0043039

2483966 3384906 0.0079023 0.0077161

3384906 3673777 0.0000377 0.0000377

3384906 3444779 0.0033878 0.0033535

3444779 3673777 0.0000564 0.0000564

2483966 3054365 0.0094747 0.0092072

3054365 3384906 0.0055121 0.0054214

1 1841871 0.0017523 0.0017431

1841871 2483966 0.0003481 0.0003478

1 833239 0.0032821 0.0032498

833239 1841871 0.0008454 0.0008432

1841871 2276710 0.0001611 0.0001610

2276710 2483966 0.0009711 0.0009683
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exist in all genomes. This conclusion should be regarded as
an extension of the result in �11�. In order to verify the ex-
tension, we take the E. coli K12 �NC_000913, 4639 675 bp�
as an example. As expected, S and H present complete
equivalence in segmenting the E. coli genome �data not
shown�. Merely, in Table II, we present the differences of S
and 2−H for some E. coli DNA segments to show that, on the
segment points, S−2−H values are always small enough to
make S and H equivalent.

Analysis shown above indicates that the equivalence of H
and S in segmenting DNA sequences should derive from the
equivalence of S and 2−H, and it also shows that the equiva-
lence of H and S is mathematical, neither biological nor
chemical.

From the proof of Theorem 1, one can see that a neces-
sary condition of the equivalence of H and S is Chargaff
parity rule 2. That is to say when Chargaff parity rule 2 is not

obeyed, the equivalence should be broken. For example,
when a DNA sequence is regarded as a four-symbol se-
quence, i.e., when deviations from Chargaff parity rule 2
�saying 
g−c
 and 
a− t
� is considered, the equivalence will
not be perfect anymore. According to the result of Zhang et
al. �11�, in the segment between 3444 780 and 3673 777 of
the MHC, for S and H schemes, there are three common
segmentation points: 3491 519, 3552 176, and 3638 110
when two-symbol �S and W� sequence is used. But for four-
symbol �A, G, C, and T� sequences, S and H result in differ-
ent segmentation points, which are 3637 779 and 3632 040,
respectively, i.e., the equivalence is broken. In fact, only
1396 980, 1490 846, 1742 437, 1841 871, 2483 966 and
3444 780 are common segmentation points for two-symbol
and four-symbol sequences of the MHC. This example
shows that Chargaff parity rule 2 is really the necessary con-
dition of the equivalence of H and S in segmenting DNA
sequences. Additionally, in article �13�, Elhaik et al. claimed
that “S and H functions are strictly equivalent to and deriv-
able from each other;” from our discussion, their conclusion
is not correct.

III. APPLICATION OF S−2−H IN ANALYZING
SEQUENCE SIMILARITY

Through studying the S−2−H values of DNA sequences
from different species, we found that the invariant is species
specific, and it is related to species evolution to a certain
extent. Historically, many researchers have studied the evo-
lutionary similarity between different organisms by examin-
ing the similarity of biological sequences, which has been
reviewed by Nandy et al. in �17�. In this paper, we use the
DNA sequences presented in Table III to study the similarity

TABLE II. Absolute and relative difference between S and 2−H

of some DNA segments of the E. coli, where the start and end
points represent the base positions of the E. coli.

Start point End point S−2−H S−2−H

S+2−H

1 526200 0.0003766925089 0.0003762669374

526200 4639675 0.0000412604561 0.0000425526665

526200 2113505 0.0000004425977 0.0000004425941

2113505 4639675 0.0001183103201 0.0001182683322

526200 2100883 0.0000000355739 0.0000000355735

2100883 2113505 0.0112656857554 0.0108079149083

2113505 2126034 0.0024776783140 0.0024592963188

2126034 4639675 0.0001141155947 0.0001140765310

TABLE III. The coding sequences of the exon 1 of beta-globin gene of ten different species.

Species Coding sequence Length

Bovine
ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGCCTTTTGGGGCAAGGTGAAA-

GTGGATGAAGTTGGTGGTGAGGCCCTGGGCAG 86

Chimpanzee
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAG-

GTGAACGTGGATGAAGTTGGTGGTGAG-GCCCTGGGCAGGTTGGTATCAAGG 105

Goat
ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGGCTTCTGGGGCAAGGTGAAA-

GTGGATGAAGTTGGTGCTGAGGCCCTGGGCAG 86

Gorilla
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAG-

GTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGG 93

Human
ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAG-

GTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAG 92

Lemur
ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTGGGGCAAG-

GTGGATGTAGAGAAAGTTGGTGGCGAGGCCTTGGGCAG 92

Mouse
ATGGTTGCACCTGACTGATGCTGAGAAGTCTGCTGTCTCTTGCCTGTGGGCAAA-

GGTGAACCCCGATGAAGTTGGTGGTGAGGCCCTGGGCAGG 94

Opossum
ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCTGGTCTAAG-

GTGCAGGTTGACCAGACTGGTGGTGAGGCCCTTGGCAG 92

Rabbit
ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGTCACTGCCCTGTGGGGCAAG-

GTGAATGTGGAAGAAGTTGGTGGTGAGGCCCTGGGC 90

Rat
ATGGTGCACCTAACTGATGCTGAGAAGGCTACTGTTAGTGGCCTGTGGGGAAAG-

GTGAACCCTGATAATGTTGGCGCTGAGGCCCTGGGCAG 92
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between ten species.
First, the S−2−H values of the ten DNA sequences are

calculated and listed in Table IV. Apparently, opossum has
the least S−2−H value for it is the only pouched animal
among the ten species. Four primates have similar S−2−H

values, showing their close evolution relations. Especially,
the values from chimpanzee and human are identical.

Naturally, the similarity between the ten species can be
measured by the “differences” between their S−2−H values,
as listed in Table V.

From Table V, we see that the three kinds of primate
�human, chimpanzee, and gorilla� DNA sequences are
strongly similar to each other for the entries associated with
them are all very small. Opossum shows great dissimilarity
with others for it is the only pouched animal listed here. This
is coincident with the results reported in �18–24�. Table V
also shows that the small entry is associated with the pair
bovine goat. So, one may expect S−2−H is related to species
evolution.

To further show the S−2−H being related to species evo-
lution, we apply it to the other data set, which includes 19
mitochondrial genomes �shown in Table VI�.

By our method, a relationship tree for the 19 DNA se-
quences is obtained, as shown in Fig. 3. For concision, cor-

responding S−2−H values and the similarity matrix are not
shown.

In Fig. 3, the relationship tree of 19 species is reasonable.
Two pouched out groups, i.e., platypus and opossum, are
grouped together and located far away from others. All pri-
mates, including human, chimpanzee, baboon, common gib-
bon, Sumatran orangutan, and Bornean orangutan are close
in the relationship tree. Additionally, the close relationships
between other species, including gray-seal and harbor-seal,
fin whale and blue whale, Indian rhinoceros and white rhi-
noceros, horse and donkey, and cow and sheep are also rea-
sonable. These relationships are consistent with those shown
in �25�. Based on the discussion above, one may come to a

TABLE IV. The S−2−H of the ten DNA sequences presented in
Table III.

Species S−2−H

Bovine 0.0177

Chimpanzee 0.0145

Goat 0.0176

Gorilla 0.0158

Human 0.0145

Lemur 0.0135

Mouse 0.0096

Opossum 0.0031

Rabbit 0.0190

Rat 0.0086

TABLE V. The similarity/dissimilarity matrix for the ten coding sequences of Table III based on the differences between S−2−H values
shown in Table IV.

Bovine Chimpanzee Goat Gorilla Human Lemur Mouse Opossum Rabbit Rat

Bovine 0 0.0033 0.0001 0.0019 0.0033 0.0042 0.0081 0.0147 0.0012 0.0091

Chimpanzee 0 0.0032 0.0014 0 0.001 0.0048 0.0114 0.0045 0.0059

Goat 0 0.0018 0.0032 0.0042 0.0008 0.0146 0.0013 0.0091

Gorilla 0 0.0014 0.0023 0.0062 0.0127 0.0031 0.0072

Human 0 0.001 0.0048 0.0114 0.0045 0.0059

Lemur 0 0.0038 0.0104 0.0055 0.0049

Mouse 0 0.0066 0.0093 0.0011

Opossum 0 0.0159 0.0055

Rabbit 0 0.0104

Rat 0

TABLE VI. The accession number and length of 19 mitochon-
drial genomes.

Species Accession No.
Length

�bp�

Blue whale NC001601 16402

Fin whale NC001321 16398

Opossum NC003039 17191

Baboon NC001992 16521

Bornean orangutan NC001646 16389

Chimpanzee NC001643 16554

Common gibbon NC002082 16472

Cow NC006853 16338

Donkey NC001788 16670

Gray seal NC001602 16797

Harbor seal NC001325 16826

Hippopotamus NC000889 16407

Horse NC001640 16660

Human NC001807 16571

White rhinoceros NC001808 16832

Indian rhinoceros NC001779 16829

Platypus NC000891 17091

Sheep NC001941 16616

Sumatran orangutan NC002083 16499
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conclusion that S−2−H is related to species evolution. To
give reasons for it, one may expect the 
x− 1

4 
 �appeared in
the proof of Theorem 2, pmin=x� might be related to species
evolution, so, based on S−2−H=o�
x− 1

4 
�, S−2−H should also
be related to species evolution. Perhaps, being modified, S
−2−H can deal with similar questions appeared in other
fields, such as analyzing similarity for amino acid or codon
sequences.
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